Transport Improvements in Stellarators with Quasisymmetry

Mission: To demonstrate the potential benefits of quasisymmetry

Presented by D.T. Anderson for the HSX Team

A. Abdou, A.F. Almagri, D.T. Anderson, F.S.B. Anderson, D.L. Brower⁺, J. M. Canik, C. Deng⁺, W. Guttenfelder, C. Lechte, K.M. Likin, H. Lu, S. Oh, P.H. Probert, J. Radder, V. Sakaguchi, J. Schmitt, J.N. Talmadge, K. Zhai

HSX Lab, University of Wisconsin-Madison, USA; +University of California-Los Angeles

2006 ICC Workshop-Austin, TX

Reduction in Transport with Quasisymmetry is Evidenced by:

- •Reduction in direct loss orbits of deeply trapped electrons
- •Higher X-ray flux and longer decay time
- Decreased parallel viscous damping and larger driven flows
- •Peaked density profiles associated with reduced thermodiffusion (that often leads to hollow density profile).
- Increased central electron temperature

Edge fluctuation characteristics and temperature/density profiles are similar outside r/a~0.6 with and without quasisymmetry for present operating conditions

Better Confinement of Deeply Trapped Electrons with Quasisymmetry

Potential on plate in electron drift direction driven negative when symmetry is broken

Larger X-Ray Flux with Quasisymmetry

Quasisymmetry leads to reduced viscous damping, larger flows

Reduced Particle Transport leads to Peaked Density Profiles in QHS

Peaked density profiles in QHS

$$\Gamma_{k} = -nL_{11}^{k} \left\{ \frac{n'}{n} - \frac{q_{k}E_{r}}{T_{k}} + \left(\frac{L_{12}^{k}}{L_{11}^{k}} - \frac{3}{2} \right) \frac{T_{k}'}{T_{k}} \right\}$$

Thermodiffusion: Particle flux due to temperature gradient

All stellarators show hollow or flat density profiles with central ECH heating

Central Electron Temperature Increases by 200 eV with Quasisymmetry

Higher QHS T_e with same absorbed power

Central Electron Temperature Increases by 200 eV with Quasisymmetry

Thermal diffusivity at r/a~0.3 is reduced in QHS compared to Mirror (~1 vs. ~3 m²/s)

QHS has longer confinement time: $\tau_E^{\,QHS} \sim 1.5$ ms, $\tau_E^{\,PSM} \sim 0.9$ ms

Symmetry-breaking Effects Profiles in Mirror Scan

No Large Differences in Fluctuation Characteristics Between Configurations

- Fluctuation levels (from ion saturation current) at the edge are same in QHS and Mirror – similar to mixing length estimates
- Correlation lengths ($L_r \approx k_\theta^{-1}$) and times are similar over a range of densities
- Turbulent diffusivities (L_r^2/τ) are ~ 20 m²/s at high density on the order of global transport analysis at the edge.

MHD Mode Observed only in QHS Plasmas

Possible n=1,m=1 GAE mode observed only in QHS discharges

(STELGAP code D. Spong, ORNL)

Long Range Plans

Understand neoclassical benefits of quasisymmetry; how much do you need?

Anomalous transport differences between symmetric/non-symmetric operation

"Appears" effective ripple matters even

at higher collisionality! (Why?)

Role of high effective transform ($|N-m\iota|$) and low ripple Investigate β -limits in qhs configuration

- -bootstrap current effects
- -ballooning modes
- -fast particle driven instabilities

Near Term Plans

- •Reduce the anomalous contribution to transport
 - -Increase the field to B=1.0T (Spring) $\tau \sim B^{0.84}$
 - -Fundamental heating (increase density, $\tau \sim n^{0.6}$)
 - -Increase heating power to 200 kW with new transmission line (Spring)
- •Measurement of E_r with DNB on loan from MST
- •Augmentation of probe-based edge fluctuations studies with central measurements with ECE and reflectometer; anomalous transport with QHS
- •Explore dependence of anomalous transport on effective ripple
- •Continue installation of 2nd 200 kW 28 GHz ECH system
 - -power modulation experiments; heat pulse $\chi_{\rm e}$ in addition to power balance
 - -steerable launcher for Te profile variation
 - **-EBW** for overdense operation

Concluding Remarks

- •Quasisymmetry Matters!
 - -Reduction of direct loss orbits
 - -Good energetic-particle confinement
 - -Reduced neoclassical particle and energy transport
 - -Reduced parallel viscous damping
- •International stellarator database shows lowering the effective ripple decreases anomalous transport
- •Advanced stellarators offer potential of tokamak-like confinement (or better) while minimizing current driven effects
 - -Disruptions
 - -Current drive/BS alignment